Измерение количества теплоты. Прибор для измерения количества теплоты Название и классификация

Измерение количества теплоты. Прибор для измерения количества теплоты Название и классификация

Необходимость оперативного определения расхода теплоты и теплопотерь с особой остротой выявилась в последнее время, когда на передний план выступило требование экономии топливно-энергетических ресурсов. Измеряют расход теплоты с помощью теплосчётчиков . При этом решается задача в соответствии с алгоритмом:

Q = V Т C T t (T 1 - T 2) , МДж,

где: Q - количество теплоты, отданное теплоносителем за время t ;

V Т - объёмный расход теплоносителя (воды), м 3 /с;

Т 1 ; T 2 - температура теплоносителя на входе и выходе потребителя, 0 С;

С Т - удельная теплоёмкость теплоносителя, МДж/м 3 .

В простейшем случае схема теплосчётчика должна содержать датчик расхода теплоносителя (водомер), два датчика температуры и вычислительный блок, реализующий вышеприведенный алгоритм (рис. 5.7).

В промышленных системах требуются более сложные схемы теплосчётчиков, которые учитывают изменение энтальпии теплоносителя и расход теплоты для горячего водоснабжения.

Индивидуальные тепломеры , широко распространённые в ряде европейских стран, оценивают расход теплоты индивидуальными потребителями, например - радиаторами центрального отопления (см. рис. 5.8). Они содержат чувствительный элемент - стеклянную градуированную трубочку, заполненную тетралином. Систематический её нагрев приводит к испарению жидкости, по которому и судят о расходе теплоты. Расчет расхода тепла производится при помощи компьютера, в базу данных которого предварительно заносят характеристики каждого радиатора.

Рис. 5.7. Схема простейшего теплосчётчика: 1-подающий (прямой) трубопровод; 2-отводящий (обратный) трубопровод; 3-водомер; 4-датчик температуры теплоносителя; 5-датчик температуры использованного теплоносителя.

Рис. 5.8. Индивидуальный тепломер на радиаторе центрального отопления.

Различают три основных способа управления процессами теплоснабжения и электроснабжения - ручное, автоматическое и полуавтоматическое. Для их реализации используются различные приборы и устройства. Наиболее часто встречающиеся это: ручные краны, задвижки, выключатели, переключатели и регуляторы различных параметров. Рассмотрим некоторые из них.

Электромагнитные клапаны - это устройства, в которых перемещение клапана обеспечивается за счёт электромагнита (рис. 5.9). Электромагнитный клапан обеспечивает, как правило, два положения - открытое и закрытое.

Открывается клапан при наличии управляющего электрического напряжения от цепи управления. При его отсутствии клапан удерживается в закрытом состоянии за счёт действия пружины.

Рис. 5.9. Электромагнитный клапан: 1-трубопровод; 2-клапан; 3-подвижный сердечник; 4-соленоид; 5-пружина.

Электромеханический кран (задвижка) содержит в качестве рабочего органа кран или задвижку. Приводится в действие рабочий орган с помощью электродвигателя, реечного, кулачкового механизмов или червячной передачи. Для увеличения усилия и уменьшения скорости действия крана служит редуктор (рис. 5.10).

Изменяя полярность питающего напряжения, подаваемого на электродвигатель постоянного тока, можно закрывать или открывать задвижку. Если используется электродвигатель переменного тока, необходимо его реверсирование путём коммутации обмоток.

Электромеханические устройства позволяют плавно изменять положение рабочего органа (задвижки, крана) от полностью открытого до полностью закрытого. Благодаря этому обеспечивается плавное регулирование скоростью потока от υ ж =0 до υ ж = υ макс . .

Рис. 5.10. Электромеханическая задвижка: 1-трубопровод; 2-задвижка; 3-реечный механизм; 4-редуктор; 5-электродвигатель.

Насосы с электроприводом позволяют перемещать жидкости и газы по трубопроводам от зон с низким статическим давлением к зонам с более высоким давлением. Эффективным является использование регулируемых (например – частотное регулирование) электроприводов, позволяющих улучшить работу системы управления и обеспечить заметную экономию электроэнергии.

Автоматические регуляторы - это устройства, обеспечивающие поддержание параметра объекта на постоянном уровне или его изменение по заданному закону. Автоматический регулятор обязательно содержит: чувствительный элемент или датчик регулируемого параметра; регулирующий орган; задающее устройство, определяющее требуемое значение параметра. Примером такого устройства может служить автоматический термостат, устанавливаемый перед нагревательными приборами системы отопления (рис. 5.11).

Работает он следующим образом. Перекрывающая трубопровод задвижка механически связана с герметичным гармониковым чувствительным элементом-термодатчиком, внутренность которого заполнена термочувствительной массой, способной расширяться при повышении температуры. При увеличении температуры воздуха в помещении, термодатчик расширяется и перекрывает трубопровод, чем ограничивается поступление теплоносителя в радиатор. Необходимую температуру в помещении можно задавать вручную поворотом защитного колпачка с пружиной.

В этой статье мы ответим на вопрос: «Что такое калориметр?». Определим общую характеристику данного механизма, его принцип работы и области применения, функциональные возможности и измерительные величины. А также уделим внимание классификации и описанию некоторых конкретных видов.

Введение

Отвечая на вопрос о том, что такое калориметр, в общих чертах его можно охарактеризовать как прибор, посредством которого производится измерение количества тепла, что выделяется или поглощается в ходе протекания физических, химических или биологических процессов.

Ввести новую терминологическую единицу «калориметр» предложили в 1780 году П. Лаплас и А. Лавуазье. Подобное устройство также используется в ядерном разделе физики, изучающем элементарные частицы, а называется оно ионизационным калориметром. Однако функция этого прибора заключается в измерении энергетического потенциала частиц.

Современный механизм

Определение теплоемкости калориметром современного производства позволяет зафиксировать исследуемую величину с точностью от десяти и до одной сотой процента. Диапазон, в котором этот прибор может работать, колеблется от 0,1 до 3500 Кельвинов. Тип устройства калориметров очень разнообразен. Он может определяться характером процесса, который изучают, а также его длительностью. Еще одним важным параметром определения типа механизма является область температур, в которых происходят измерения, а также количество измеряемой величины теплоты.

Определение энергетического эквивалента калориметром может показать субъекту количество тела, что выделяется в ходе сгорания топливного ресурса. Сделать это можно благодаря выражению Q = C∆T, в котором С - показатель теплового (энергетического) эквивалента. Задать параметры определения путем калибровки прибора. Другая величина ∆T - функция известного выходящего сигнала калориметра.

Распределение по типам

Нельзя ответить на вопрос о том, что такое калориметр, не ознакомившись с его типами.

Одним из наиболее распространенных представителей таких аппаратов является калориметр-интегратор. Он предназначается для определения общей суммы количества тепла Q, которое выделяется в начале реакции и ее конце.

Еще одним широко известным калориметром является прибор для измерения мощности тепла, то есть скорости, с которой выделяется тепло - L. А также они могут делиться по конструкции механизма и измерительной методологии, подходу. Еще выделяют калориметры жидкостного и массивного типа. Также встречаются одинарные и дифференциальные устройства.

Измерение теплоты

Что такое калориметр в физике? Определение гласит, что это прибор для измерения количества выделяемой теплоты. При этом теплоту, выделяемую в процессе химической реакции, можно узнать только благодаря жидкостному калориметру-интегратору.

Конструкция представлена в виде сосуда, наполненного жидкостью (как правило, водой). В нем располагают камеру для проведения эксперимента («калориметрическую бомбу»), мешалку, термометр и прибор для нагревания.

Измерения калориметрических систем

Внесение корректив в естественный ход выделения тепла системы можно обнаружить при изменении какого-либо из ее состояний. Они же, в свою очередь, определяются с помощью анализа величины теплоты, которая вводится в устройство. Определение постоянной калориметра происходит до начала проведения измерительных работ и сравнивается с заданной и откорректированной величиной. Приборы подвергаются градуировке, благодаря которой определяется коэффициент. Его необходимо перемножить с измеренным термометром изменением температуры прибора.

Наличие побочных эффектов

По факту калориметрические данные показывают непосредственно только суммарное число теплот, что исследуются в процессе. Еще можно узнать на наличии побочного процесса (или процессов), который мог вызвать явление перемешивания, испарения жидкости, а также разбивания ампулы с веществами и т. п. Определение константы калориметра позволяет человеку получить доступ к сравнению показателей изменений на фоне чего-либо. Именно с его помощью происходит анализ информации.

Теплота побочного ряда процессов определяться должна при помощи опыта или расчета, исключающегося из результатов исследований. Примером побочного явления может послужить неизбежный теплообмен между калориметром и окружающим пространством и материей.

Изотермические наблюдения

Существует калориметр-интегратор изотермического типа, позволяющий вводить изменения в агрегатные состояния тел, которые образуют основную часть системы. Примером может послужить таяние массы льда в ледяной камере калориметра Бунзена. Узнать изменение теплоты, которое влияет на агрегатное состояние, но не вызывает перемены температуры, можно, если рассчитать массу вещества и количество теплоты, которое для этого потребовалось бы затратить.

Для определения удельной теплоемкости калориметра необходимо знать, что она является численно равной количеству теплоты, которое затрачивается для нагревания единицы массы материи. Ее единицей является Дж/кг▪К.

Важно помнить, что показатель удельной теплоемкости - это неоднозначная характеристика. Существует зависимость между условиями осуществления теплопередачи и значением работы, которая сопровождает данный процесс.

Массивный тип

Для определения значения энтальпии вещества в условиях температуры до 2500 градусов по Цельсию используют массивные интеграторы. Масса калориметра такого типа может варьироваться в зависимости от величины веса измеряемого вещества, так как конструкция состоит из металлов. Фактически это блок с некоторым количеством выемок для сосудов. В них протекают реакции, предназначенные для нагревательного прибора и/или термометра. Произведение значения тепла, измеренного калориметром, и разности температурных подъемов в блоке показывает нам энтальпию веществ(а).

Поток

Можно определить показатель теплоемкости какого-либо газа или жидкости с помощью проточного лабиринтного калориметра. Он фиксирует разность температуры, которая входит и выходит из стационарных потоков исследуемого вещества. Также он определяет мощность такого потока и силу теплоты, которая выделяется электрообогревателем, в джоулях.

Средство для измерения мощности

Отвечая на вопрос о том, что такое калориметр, важно будет упомянуть о предназначении этого прибора для определения мощности. Такой аппарат, в отличие от интегратора, должен быть наделен значительной способностью к теплообмену. Это необходимо для того, чтобы он смог удалять то количество теплоты, которое в него вводят. Из этого следует, что состояние калориметра находится в мгновенном измерении.

Тепловую величину мощи процесса находят посредством использования калориметров с оболочкой. Изобретение было сделано ученым-физиком из Франции, Э. Кальве. Изначально механизм был представлен в виде металлического блока, оснащенного каналами. На них разложили специальные цилиндрические ячейки, предназначенные для проведения исследуемого процесса. Металл, который используют в конструкции камеры, является оболочкой. Ее температуру следует держать на постоянной отметке с точностью до пяти-шести Кельвинов.

Измерение разности между температурой ячейки и блока происходит при помощи термобатареи, имеющей до тысячи спаек. Показатели ее ЭДС и теплообмена ячейки являются величинами, пропорциональными малому различию в температуре, возникшей между такими компонентами, как блок и ячейка. При этом в самой ячейке должна выделяться или поглощаться теплота. Очень часто в подобных блоках располагают пару ячеек, которые будут работать дифференциально.

Название и классификация

Обычными названиями для калориметров являются:

  • для химических реакций;
  • бомбовый;
  • изотермического типа;
  • низкотемпературного типа;
  • ледяного типа.

Все они имеют данные об историческом происхождении. Своим названием они, как правило, обязаны, области, в которой их будут использовать. Однако эти наименования не относятся к сравнительной или полной характеристике.

Общий вид классификации калориметров строится, используя в качестве основы, рассмотрение одной из трех главных величин, по отдельности или вместе. Именно подход к анализу показателей определяет методику измерений температуры, которой обладает:

  • калориметрическая система Тс;
  • оболочка То;
  • количество выделившейся теплоты L в течение единицы времени (тепловая мощность).

Калориметры, с постоянным значением Тс и То, относятся к изотермическому типу, а приборы, в которых Тс=То, называют адиабатическими. Если устройство работает в условиях с постоянной разностью между температурами, то его называют калориметром с постоянным течением теплообмена. Изопериболический механизм обладает постоянной То, а Тс - это тепловая функция мощности L.

Окончательные результаты

Существует ряд факторов, способных повлиять на конечный результат измерений. Одним из них является наличие внесения изменений, влияющее на их окончательный результат. Оно обусловлено надежностью работы автоматического набора регуляторов температуры изотермической или адиабатической оболочки. В последней из них температурная величина определяется ее близостью к изменяющимся условиям всей калориметрической системы. Такая конструкция обладает легкостью металлической ширмы и снабжена прибором для нагревания, который уменьшает протекание и значение теплообмена до определенного уровня, при котором температура калориметра будет изменяться лишь на десятичные части градуса в минуту. Это может позволить снизить теплообмен, протекающий в течение калориметрического эксперимента, до предельно низких значений, которыми можно пренебречь.

Рассматриваемые в статье приборы играют огромную роль в жизни человека и являются одним из очень значимых достижений науки. Главная функция калориметра заключена в исследовании данных изменения температуры и определении наличия дефектов в процессе теплообмена. Существует различные способы классификации данных приборов, связанные с конкретными параметрами, резко различающимися между собой. Материалом для изготовления могут служить самые разнообразные металлы, например, есть медные калориметры, свинцовые, стальные и другие. Кроме чистых веществ, также могут использоваться и сплавы.

Калориметра, м. [от латин. calor – теплота и греч. metron – мера] (физ.). Прибор для измерений количества теплоты. Большой словарь иностранных слов

  • калориметр - КАЛОР’ИМЕТР, калориметра, ·муж. (от ·лат. calor - теплота и ·греч. metron - мера) (физ.). Прибор для измерений количества теплоты. Толковый словарь Ушакова
  • КАЛОРИМЕТР - (от лат. calor - тепло и греч. metreo - измеряю), прибор для измерения кол-ва теплоты, выделяющейся или поглощающейся в к.-л. физ., хим. или биол. процессе. Термин «К.» был предложен франц. учёными А. Лавуазье и П. Лапласом (1780). Совр. Физический энциклопедический словарь
  • калориметр - орф. калориметр, -а (к калория) Орфографический словарь Лопатина
  • калориметр - -а, м. Прибор для измерения количества теплоты (в калориях), отдаваемой или поглощаемой телами. Малый академический словарь
  • КАЛОРИМЕТР - КАЛОРИМЕТР (от лат. calor - тепло и...метр) - прибор для измерения количеств теплоты, выделяющейся или поглощающейся при различных физических, химических или биологических процессах. Большой энциклопедический словарь
  • калориметр - КАЛОРИМЕТР -а; м. [от лат. calor - тепло и греч. metron - мера] Прибор для измерения количества теплоты (в калориях), выделяемой или поглощаемой телами при каком-л. физическом, химическом или биологическом процессе (например, при сжигании топлива или при теплообмене). Толковый словарь Кузнецова
  • КАЛОРИМЕТР - КАЛОРИМЕТР, прибор, используемый при экспериментах, связанных с измерением количества тепла. Обычно это сосуд из материала, обладающего высокой проводимостью, например, из меди, снабженный теплоизоляцией. Научно-технический словарь
  • калориметр - калориметр м. Прибор для измерения количества теплоты, выделяющейся или поглощаемой при каком-либо физическом, химическом или биологическом процессе. Толковый словарь Ефремовой
  • калориметр - КАЛОРИМЕТР, а, м. Прибор для измерения количества теплоты. Толковый словарь Ожегова
  • калориметр - Калориметр, калориметры, калориметра, калориметров, калориметру, калориметрам, калориметр, калориметры, калориметром, калориметрами, калориметре, калориметрах Грамматический словарь Зализняка
  • Калориметр - (Калори- + греч. metreō измерять) прибор для измерения количества тепла, выделенного в ходе физического, химического или биологического процесса; различные типы К. используются при медико-биологических исследованиях. Медицинская энциклопедия
  • калориметр - Прибор для определения количества теплоты, выделяемой или поглощаемой при каком–либо физ., хим. или биол. процессе. Микробиология. Словарь терминов
  • калориметр - сущ., кол-во синонимов: 7 вдержка 4 микрокалориметр 1 тепломер 4 теплохранитель 1 фотокалориметр 4 фотометр 17 электрокалориметр 1 Словарь синонимов русского языка
  • калориметр - КАЛОРИМЕТР м. снаряд для определения степени теплоты, тепломер; или снаряд для скопленья, сосредоточенья теплоты; теплохранитель. Калорифер, печь, топка; вообще снаряд для согреванья комнат. Толковый словарь Даля
  • Измерять количество теплоты учёные стали задолго до того, как в физике появилось понятие энергии. Тогда была установлена особая единица для измерения количества теплоты - калория (кал).

    Калория - это количество теплоты, которое необходимо для нагревания \(1\) г воды на \(1\)°С.

    \(1\) кал \(= 4,19\) Дж \(≈ 4,2\) Дж.

    Термин «калория» (от латинского «calor» - тепло) ввёл в научный оборот французский химик Николя Клеман-Дезорм (\(1779-1842\)).

    Николя Клеман-Дезорм

    Его определение калории как единицы измерения тепла было впервые опубликовано в \(1824\) году в журнале «Le Producteur», а во французских словарях оно появилось в \(1842\) году.

    Однако задолго до появления этого термина были сконструированы первые калориметры - приборы для измерения теплоты .

    Первый калориметр изобрёл английский химик Джозеф Блэк и в \(1759-1763\) годах с его помощью определил теплоёмкости разных веществ, скрытую теплоту плавления льда и испарения воды.

    Джозеф Блэк

    Изобретением Д. Блэка воспользовались знаменитые французские учёные Антуан Лоран Лавуазье (\(1743-1794\)) и Пьер Симон Лаплас (\(1749-1827\)).

    Антуан Лоран Лавуазье

    Пьер Симон Лаплас

    В \(1780\) году они начали серию калориметрических экспериментов, которые позволили измерить тепловую энергию.

    Это понятие встречается ещё в \(XVIII\) веке в трудах шведского физика Иоганна Карла Вильке (\(1732-1796\)), который занимался исследованием электрических, магнитных и тепловых явлений и задумывался об эквивалентах, в которых можно измерять тепловую энергию.

    Иоганн Карл Вильке

    Устройство, которое впоследствии начали называть калориметром, Лавуазье и Лаплас использовали, чтобы измерять количество теплоты, выделяющееся в различных физических, химических и биологических процессах. Тогда ещё не было точных термометров, поэтому для измерения теплоты приходилось идти на ухищрения.

    Первый калориметр был ледяным. Внутренняя полая камера, куда помещали объект, излучающий тепло (например, мышку), была окружена рубашкой, заполненной льдом или снегом. А ледяная рубашка, в свою очередь, была окружена воздушной, чтобы лёд не плавился под действием внешнего нагрева. Тепло от объекта внутри калориметра нагревало и плавило лёд. Взвешивая талую воду, стекавшую из рубашки в специальный сосуд, исследователи определяли теплоту, выделенную объектом.

    Всякие тепловые изменения, которые испытывает какая-нибудь материальная система, переменяя своё состояние, происходят в обратном порядке, когда система вновь возвращается в своё первоначальное состояние.

    Иными словами, чтобы разложить воду на водород и кислород, надо затратить столько же энергии, сколько выделяется при реакции водорода с кислородом с образованием воды.

    В том же \(1780\) году Лавуазье поместил в калориметр морскую свинку. Тепло от её дыхания растапливало снег в рубашке. Потом последовали и другие эксперименты, которые имели огромное значение для физиологии.

    Тогда-то Лавуазье высказал мысль, что дыхание животного подобно горению свечи, за счёт которого в организме поддерживается необходимый запас тепла. Он также впервые связал три важнейшие функции живого организма: дыхание, питание и транспирацию (испарение воды). Видимо, с тех пор и заговорили о том, что пища сгорает в нашем организме.

    В \(XIX\) веке благодаря стараниям знаменитого французского химика Марселена Бертло (\(1827-1907\)), который опубликовал более 200 работ по термохимии, точность калориметрических методов сильно повысилась и появились более совершенные приборы - водяной калориметр и герметичная калориметрическая бомба.

    Марселен Бертло

    Последний прибор нам особенно интересен, потому что в нём можно измерять теплоту, выделяемую при очень быстрых реакциях - горении и взрыве.

    Навеску сухого исследуемого вещества насыпают в тигель, помещают внутри бомбы и герметично закрывают этот сосуд. Затем вещество поджигают электрической искрой. Оно сгорает, отдавая тепло воде в окружающей его водяной рубашке. Термометры позволяют точно фиксировать изменение температуры воды.

    В похожем калориметре в тридцатых годах \(XIX\) века проводил первые опыты с пищей знаменитый немецкий химик Юстус фон Либих (\(1803-1873\)), который разделял идеи Лавуазье о том, что пища - это топливо для организма, как дрова для печки.

    Юстус фон Либих

    По новым энергосберегающим нормам владельцы многоквартирных домов должны побеспокоиться о том, как организовать учет тепла. Должны быть установлены общедомовые приборы учета тепла, а при желании учитывать тепло в квартирах — индивидуальные теплосчетчики . Счетчики тепла –прибор для измерения количества теплоты. В результате измерений мы получаем величину количества теплоты. В зависимости от теплосчетчика, количество теплоты измеряется в:

    1. В гигакаллориях (Гкал\ч).

    2. В киловатт-часах (кВт\ч)

    Сфера применения приборов учета тепла

    Теплосчетчики устанавливаются, начиная с теплоэлектростанций центральных, районных и т.д. до потребителя. Таким образом, контролируется потребление тепловой энергии и ее распределение. Тепловые счетчики устанавливаются в системах, где теплоносителем служит вода или пар. Это многофункциональные микропроцессорные приборы. Они выводят свои показания на основании измерений температуры, давления, расхода теплоносителя. В их состав входят тепловычислители. Приборы запрограммированы на вычисление количества теплоты согласно действующим стандартам. Такие приборы имеют надежную защиту от несанкционированного доступа.

    Как рассчитывается количество теплоты

    В программе расчета количества теплоты, заданной тепловычислителю, учитывается вид теплоносителя, структура системы отпуска теплоты. В различных отопительных системах может меняться количество теплоносителя по причине отвода их в систему горячего водоснабжения или в результате утечек. Алгоритмы расчета будут разными в зависимости от того, открытой или закрытой будет система отопления, то есть, меняется ли в ней количество теплоносителя или нет.

    Количество теплоты измеряется косвенно. Погрешность данной величины зависит от погрешности средств измерения первичных величин, погрешности вычислений, погрешности тепловычислителя, зависящей от погрешности расчетных соотношений, отражающих свойства пара и воды. Формулой для расчета количества теплоты является:

    Q=Q m ×k×(t 1 -t 2)×t, в Гкал\ч, Q=V×k×(t 1 -t 2), в кВт\ч

    где Q m (т)– масса прошедшего теплоносителя,

    V (m 3)= объем прошедшего теплоносителя,

    t 1 , t 2 (°С) –входная и выходная температура теплоносителя,

    t (ч) — время,

    k — тепловой коэффициент теплоносителя (ГОСТ Р ЕН 1434-1-2011 приложение «А»).

    Соответственно, для определения количества теплоты необходимы показания датчиков температуры на входе и выходе системы. Такие датчики устанавливаются на подающем трубопроводе отопительной системы и на обратном. От них и от измерителя расхода на вычислительный процессор подаются данные для расчета. В большинстве случаев вычисленные данные отображаются на ЖК-экране. В результате вычислений формируется архив данных, который может быть открыт для просмотра.

    Также в состав прибора по учету тепла входят преобразователи давления, запорная арматура. Цена на прибор зависит от устройства, типа счетчика. Основное различие лежит в типе расходомера. Однако независимо от того, какой тип расходомера используется, каждый счетчик тепла хранит данные среднечасовых и среднесуточных показателях расхода. Тепловычислитель может быть расположен не только в теплопункте, но и за его пределами, предоставляя возможность дистанционного снятия показаний.

    Методы измерения расхода теплоносителя

    Различные виды теплосчетчиков отличаются методом измерения расхода теплоносителя. По методу измерения расходомеры отличают:

    • переменного перепада давления;
    • турбинные (крыльчатые);
    • ультразвуковые;
    • электромагнитные.

    Метод переменного перепада давления является устаревшим и сейчас практически не применяется в приборах. Турбинные расходомеры имеют большие недостатки, хоть и являются самым экономичным вариантов измерений расхода. Ультразвуковые расходомеры наиболее распространенные на сегодняшний день ввиду своей высокой надежности и точности. Примерно также популярны и электромагнитные расходомеры, которые достаточно современны и надежны.

    Расходомер обычно устанавливается на подающей трубе. Если в системе производится разбор теплоносителя или есть утечки, они регистрируются при помощи показаний расходомера, установленного на обратном трубопроводе.

    Требования к теплосчетчикам

    Независимо от особенностей конструкции счетчика, все они достаточно точны. Метод измерения расхода не влияет на его показания. Основные требования к счетчикам, которые должны быть выполненными при его установке:

    • марка теплосчетчика должна быть внесенной в реестр допустимых к использованию в коммерческой сфере приборов;
    • теплосчетчик должен иметь заключение метрологической государственной службы;
    • установка такого счетчика – лицензированные работы, поэтому обращаться необходимо в соответствующие службы.

    Общие принципы расчета количества теплоты, затраченного на отопление, зависит от разницы температур, а не от того, какая температура теплоносителя на входе в отопительную систему.



    top